Labeling outerplanar graphs with maximum degree three
نویسندگان
چکیده
منابع مشابه
Labeling outerplanar graphs with maximum degree three
An L(2, 1)-labeling of a graph G is an assignment of a nonnegative integer to each vertex of G such that adjacent vertices receive integers that differ by at least two and vertices at distance two receive distinct integers. The span of such a labeling is the difference between the largest and smallest integers used. The λ-number of G, denoted by λ(G), is the minimum span over all L(2, 1)-labeli...
متن کاملc-Critical Graphs with Maximum Degree Three
Let G be a (simple) graph with maximum degree three and chromatic index four. A 3-edge-coloring of G is a coloring of its edges in which only three colors are used. Then a vertex is conflicting when some edges incident to it have the same color. The minimum possible number of conflicting vertices that a 3edge-coloring of G can have, d(G), is called the edge-coloring degree of G. Here we are mai...
متن کامل(2,1)-Total labeling of planar graphs with large maximum degree
The (d,1)-total labelling of graphs was introduced by Havet and Yu. In this paper, we prove that, for planar graph G with maximum degree ∆ ≥ 12 and d = 2, the (2,1)-total labelling number λ2 (G) is at most ∆ + 2.
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملOn parcimonious edge-colouring of graphs with maximum degree three
In a graph G of maximum degree ∆ let γ denote the largest fraction of edges that can be ∆ edge-coloured. Albertson and Haas showed that γ ≥ 13 15 when G is cubic . We show here that this result can be extended to graphs with maximum degree 3 with the exception of a graph on 5 vertices. Moreover, there are exactly two graphs with maximum degree 3 (one being obviously the Petersen graph) for whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2013
ISSN: 0166-218X
DOI: 10.1016/j.dam.2012.08.018